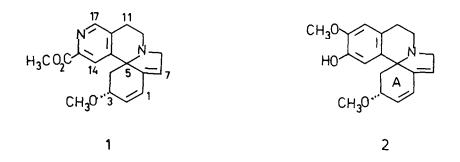
ERYMELANTHINE, A NEW TYPE OF ERYTHRINA ALKALOID CONTAINING A

Ermias Dagne and Wolfgang Steglich<sup>\*</sup> Institut für Organische Chemie und Biochemie der Universität Gerhard-Domagk-Straße 1, D-5300 Bonn 1, FRG


<u>Summary</u>: Erymelanthine, isolated from the seeds of <u>Erythrina melanacantha</u>, represents the first member of a new type of erythrina alkaloid containing a 16-azaerythrinane skeleton.

As part of our studies on the alkaloids of <u>Erythrina</u> species from Ethiopia<sup>2</sup> we have isolated a new alkaloid erymelanthine (<u>1</u>) along with erysovine (<u>2</u>) from the seeds of <u>E</u>. <u>melanacantha</u>, a tree known to occur in southern Ethiopia, Somalia, northern Kenya and Tanzania.<sup>3</sup>

<u>1</u> has the following physical and spectral properties: mp 160-161°C;  $[\alpha]_D^{22}$ +87° (c = 0.11, MeOH); MS: m/z 312 (M<sup>+</sup>, C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub>, 79%), 297 (36), 281 (100), 279 (28), 221 (C<sub>15</sub>H<sub>13</sub>N<sub>2</sub>, 49), 193 (12); IR (CHCl<sub>3</sub>): 2950, 1720, 1590, 1430, 1380, 1340, 1290, 1230, 1100, 930, 820/cm; UV (EtOH)  $\lambda_{max}$  (E): 270 (3000), 230 nm (8000); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  1.91 (dd, J=12+10 Hz, H-4<sub>ax</sub>), 2.51 (br. dd, J=12+5 Hz, H-4<sub>eq</sub>), 2.77 (m, H-10<sub>eq</sub>), 3.10 (m, 2H, H-11), 3.31 (s, OCH<sub>3</sub>), 3.55 (m, 2H, H-8), 3.75 (m, H-10<sub>ax</sub>), 3.96 (s, CO<sub>2</sub>CH<sub>3</sub>), 4.00 (m, H-3), 5.76 (br. s, H-7), 6.10 (d, J=10 Hz, H-1), 6.61 (dd, J=10+2 Hz, H-2), 8.00 (d, J=1 Hz, H-14), 8.50 (br. d, J=1 Hz, H-17).

<u>1</u> differs from all the other alkaloids isolated so far from <u>Erythrina</u> species by the presence of a second nitrogen atom.<sup>4</sup> Its MS exhibits the normal fragmentation pattern for an alkaloid of the 1,6-diene series<sup>5</sup>, and the <sup>1</sup>H NMR signals for the protons attached to rings A, B and C correspond closely to those observed in the spectrum of erysovine (<u>2</u>). A dramatic difference, however, occurs in the aromatic region. Whereas in <u>2</u> and other erythrina alkaloids two singlets having chemical shifts between 6.5 and 7.0 ppm may be observed

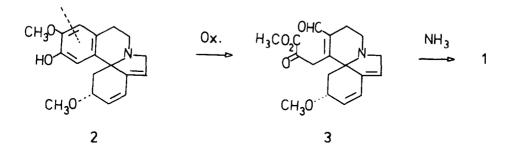
for H-14 and H-17, the corresponding signals of  $\underline{1}$  appear at unusually low field ( $\delta$  8.00 and 8.50, respectively). This may be explained by the presence of a pyridine unit in ring D, substituted by a carbomethoxy group at one of the  $\alpha$ -positions. From the coupling constant of J=1 Hz between the aromatic signals it can be concluded that these protons occupy  $\alpha$ - and  $\beta$ '-positions of the pyridine ring. The signal at  $\delta$  8.50 is broadened by benzylic coupling with the protons atC(11) as could be shown by decoupling experiments. This excludes a 15-ery-thrinane derivative and is in full accord with a 16-azaerythrinane structure  $\underline{1}$  for erymelanthine.



Structure  $\underline{1}$  is further supported by comparison of the <sup>13</sup>C NMR data of erymelanthine with those recently published for erysovine<sup>6</sup> (table 1). Signals for C(1) to C(11) in rings A, B and C exhibit nearly identical chemical shifts for both alkaloids. The chemical shifts of the carbons in the pyridine ring of  $\underline{1}$ 

| Carbon No. |         | 1  |          | <u></u> 2 <sup>6</sup> | " <u></u> | 1     | ······         |     | ² <sup>6</sup> |
|------------|---------|----|----------|------------------------|-----------|-------|----------------|-----|----------------|
| 1          | δ 124.9 | đ  | J=156 Hz | 125.6                  | 12        | 134.0 | s              | _   | 125.2          |
| 2          | 131.7   | d  | 154      | 132.0                  | 13        | 140.4 | s              | -   | 131.5          |
| 3          | 75.4    | d  | 137      | 75.9                   | 14        | 122.1 | $d^a$          | 158 | 111.0          |
| 4          | 40.4    | t  | 126      | 41.4                   | 15        | 149.6 | s              | -   | 145.6          |
| 5          | 66.5    | s  | -        | 66.8                   | 17        | 150.4 | db             | 171 | 112.5          |
| 6          | 145.7   | sc | -        | 142.4                  | CO, CH,   | 165.9 | s              | -   | _              |
| 7          | 123.4   | d  | 163      | 122.4                  | CO, CH,   | 52.8  | q <sub>d</sub> | 141 | -              |
| 8          | 56.1    | t  | 134      | 56.8                   | OCH,      | 56.5  | qd             | 135 | 55.7           |
| 10         | 42.3    | t  | 132      | 44.0                   | 3         |       | -              |     |                |
| 11         | 21.3    | t  | 125      | 24.2                   |           |       |                |     |                |

Table 1. <sup>13</sup>C NMR data of erymelanthine ( $\underline{1}$ ) and erysovine ( $\underline{2}$ ) in CDCl<sub>3</sub>


a) Sharp singlet in H-coupled <sup>13</sup>C NMR spectrum; b) Dt,  ${}^{3}J_{CH}$ = 3 Hz; c) d,  ${}^{3}J_{CH}$ = 11 Hz; d) Qd,  ${}^{3}J_{CH}$ = 4.5 Hz.

are in close agreement with literature data of similar systems.<sup>7</sup> The signals at  $\delta$  149.6 and 150.4, which correspond to the  $\alpha$ - and  $\alpha$ '-positions of the pyridine ring occur as a singlet and doublet, respectively, the latter being further split into triplets by  ${}^{3}J_{\rm CH}$  coupling with the protons at C(11). This lends further support for the positioning of the carbomethoxy group at C(15).

The carbomethoxy group gives rise to two signals at  $\delta$  52.8 and 165.9 in the  $^{13}\text{C}$  NMR spectrum and is responsible for the presence of an IR band at 1720/cm.

The stereochemistry at C-3 may be deduced from the coupling constants  $J_{3,4eq}$  and  $J_{3,4ax}$  in the <sup>1</sup>H NMR spectrum.<sup>8</sup> Since <u>1</u> and <u>2</u> show the same values (5 and 12 Hz) for these coupling constants, <u>1</u> must possess the same stereochemistry. The similarity of the CD spectra of <u>1</u> and <u>2</u> particularly in the 220-260 nm region adds further support to this stereochemical assignment.

A plausible biosynthetic route to erymelanthine may involve extradiol cleavage of erysovine between C(16) and C(17) followed by formation of the pyridine ring by condensation of the intermediate  $\frac{3}{2}$  with ammonia. The co-occurrence of  $\frac{1}{2}$  and  $\frac{2}{2}$  in the seeds of <u>E</u>. <u>melanacantha</u> lends support to this hypothesis.



Barton et al.<sup>9</sup> have proposed two pathways for the conversion of aromatic erythrina alkaloids into  $\alpha$ - and  $\beta$ -erythroidines, which involve either intradiol [C(15)-C(16)] or extradiol [C(16)-C(17)] cleavage. The isolation of erymelanthine seems to advocate the latter pathway.

The possibility that  $\underline{1}$  is an artefact formed from intermediate  $\underline{3}$  during work-up with ammonia<sup>10</sup> was excluded by isolating  $\underline{1}$  from the seeds of  $\underline{E}$ . <u>melan</u>-acantha by a procedure omitting ammonia during the extraction.

<u>Acknowledgment</u>: E. D. gratefully acknowledges a fellowship from the Alexander von Humboldt-Stiftung. The Bruker WM 400 NMR spectrometer was made available through a grant from the Deutsche Forschungsgemeinschaft.

## References and Notes

- 1) Dedicated to Professor Sir Derek Barton on the occasion of his 65<sup>th</sup> birthday.
- 2) E. Dagne and W. Steglich, Phytochemistry, in press.
- 3) The seeds of <u>E</u>. <u>melanacantha</u> were collected in April 1982 in south Ethiopia from trees growing in the province of Borana, 58 km west of Negelle town at an altitude of 980 m above sea level. The plant was identified by Ato Mesfin Tadesse of the Biology Department, Addis Ababa University. For a botanical description of this plant see: J.B. Gillet, R.M. Polhill and B. Verdcourt in E. Milne-Redhead and R.M. Polhill (Eds.), <u>Flora of Tropical East Africa</u>, Crown Agents, London 1971, p. 552.
- Recently an erythrina alkaloid, erythramide, possessing an extra nitrogen atom in form of a carboxamino group has been isolated from <u>Cocculus lauri-folius</u>: M. Juichi, Y. Fujitani, T. Shingu and H. Furukawa, <u>Heterocycles</u>, 16, 555 (1981).
- 5) R.B. Boar and D.A. Widdowson, J. Chem. Soc. B, 1970, 1591.
- A.S. Chawla, S. Chunchatprasert and A.H. Jackson, Org. Magn. Reson. 21, 39 (1983).
- 7) E. Breitmaier and G. Bauer, <sup>13</sup><u>C-NMR-Spektroskopie</u>, G. Thieme, Stuttgart 1977, p. 367.
- 8) S.F. Dyke and S.N. Quessy in R.H.F. Manske and R.G.A. Rodrigo (Eds.), The Alkaloids, Vol. 17, Academic Press, New York 1981, p. 11.
- D.H.R. Barton, R.D. Bracho, C.J. Potter and D.A. Widdowson, J.C.S. Perkin I, 1974, 2278.
- Cf. the formation of gentianine from gentiopicroside or swertiamarine:
  H.-G. Floss, U. Mothes and A. Rettig, <u>Z</u>. <u>Naturforsch</u>. <u>19</u> <u>b</u>, 1106 (1964).

(Received in Germany 1 September 1983)